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Let us consider the nonlinearity effects on the propagation of elastic 
waves in a solid conductor in the presence of a magnetic field. Let us 
assume that the effects of nonlinearity and dissipation are weak at a 
distance whose order of magnitude is one wave length. Disregarding the 
cubic terms, the initial system of equations (1) reduces to one equa- 
tion (15), whose solution is known [I]. It is shown that the effects of 
nonlinearity may lead to the formation of a discontinuity. 

The effects of nonlinearity in the equations of motion and of dis- 
sipation in a medium on the propagation of waves represents a field of 
great interest and a great many papers are devoted to this subjeot. The 
investigation of the propagation of acoustic waves in a gas tl, 21, 
electromagnetic waves in ferrite [31, and in a conducting liquid f41, 
and elastic waves in an isotropic solid [51, shows that as a consequence 
of interaction of the waves, the harmonic content of the original signal 
is greatly increased. This may lead to a distortion of the wave front 
and even to a discontinuity if the medium has no dispersion. When dis- 
persion is present, the leading harmonics absorb more strongly and the 
tendency to form a discontinuity decreases. One must also expect all 
these effects in the propagation of magnetoelastic waves in an isotropic 
solid. The present paper is devoted to this subject. 

Let us consider the system of self-consistent equations for a mag- 
netic field H, and a vector displacement u of the medium [61 
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Here, uik is the elastic stress tensor, E is the energy of elastic 
deformat ion 

Let us consider a solid occupying the half-space x > 0. and let a 
progressive wave be propagated along the x-direction (i.e. the wave 
vector k is parallel to the x-axis). Let us assume that an external con- 
stant magnetic field Ii0 lies in the xy-plane. Considering the original 
system of equations in component form. we obtain the result that the 
equations for at, HZ and H, contain no other components. This means that 
if they are equal to xero at the boundary then they will also remain so 
throughout space. Thus we have 

Equations for the remaining components are 

Where 

For a linear approximation (and with u = a), let us assume a progres- 
sive wave with a phase velocity u = k/w, is propagated along the z-axis, 
which satisfies the dispersion equation 

JAl(u) = 
1 - 8e2 

0 

-1 
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Where 

In other words, for a linear approximation, all unknown values are 
functions of one independent variable y = kx - at. For computation of 
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the infinitesimal nonlinear and dissipation terms, one must assume [l, 
2,41 that the unknown quantities depend on two variables: the complete 
phase q~ = kx - at and the “slow coordinate” c = skx, where E << 1. The 
requirement that E be infinitesimal reflects the fact that nonlinear 
and dissipation forces are weakly in evidence at a distance whose order 
of magnitude is one wavelength.* 

Taking into account this observation and transferring from the vari- 
ables (x, t) to the variables (yr, c), we rewrite equation (3) in the 
form 

Where 

h= h’ 
Ho,r’ 

In passing from 
tionship 

v= % % 

U’ 
W=_, y = ku,, 

u 
R, = _d??- 

4noua 

system (3) to equation (5) use is made of the rela- 

e-_r+R,<l 

as well as the omitting of terms containing Em. 

Further, it is found convenient to introduce 
having the following relationships: 

(6) 

new unknown functions 

i - B,” 
w = w, h= ---;--h 

4%” (7) 

l The idea of this method essentially coincides with the idea of the 
Krylov-Bogoliubov-Mitropol’ skii (KBhiL method, [?I and the simplified 
equations obtained in (5) by introducing the “slow coordinate” may 
be considered as the initial point in using the KBM method. The KEiM 

method is not employed here, since the exact solution for equation 
(15) is known. 



1440 L.A. Pospelov 

and to transform the system of equations into the following 

PV avw 
2- 
w 

Where 

(8) 

The subscripts ye and 5 of the unknown functions mean differentiation 
with respect to p and e, respectively. 

The system of equations written in the form of (8) will be called the 
reduced system of equations. Further, it is verified that to write the 
initial system of equations in the form indicated will be essential for 
the application the method. By this formulation, the method becomes 
applicable to other systems of equations which may contain a larger 
number of initial equations. 

Such a system of self-consistent equations in magnetohydrodynamics 
for a magnetic field H, vector velocity II, density p, temperature T and 
entropy S also reduces to the following system of four reduced equations 
(for two components of velocity, 
and density): 

one component of the magnetic field, 

ax2 
tgaw= q, 

al: aX 
$-a$= CD,, 

where pi is a linear combination 

(x,7 “7%) 0’ X,W 

aT, ax3 dz, ax, 

a+ 
- w = @2, 

_-- 
a.$ aJ, - @‘a (10) 

of terms with the form 

(i, m, n = 1, 2, 3, 4) 

The equation describing the propagation of an acoustic wave in a heat 
conducting viscous gas [21 reduces to a system of two reduced equations 
for velocity and density 

3 ax2 
* -gq= @l, 

ax2 ax1 - * -WAD2 

Let us consider equation (8) as algebraic, and, solving for their 
relative values 

(11) 

Xl = v,, xa = WJI, x3 = h, 

we obtain 
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d,,xi = di (i = 1, 2, 3), de+ ‘$ _;I (12) 

Here di is a determinant obtained by replacing the ith column in d, 

by a column composed of absolute terms of equation (8). Using equations 
(9) and (lo), it is easy to show that 

dl=d,=d3=O)r-@S+cR)3=0 (13) 

The following equalities are obtained from the system of equations 
(8) with an accuracy extending up to terms of order s*: 

V,=W,=h=q (14) 

Substituting expression (14) into equation (13), we obtain an equa- 
tion which satisfies the characteristic function 

Where 

The transformations used here are valid if the following expressions 
hold: 

The second of these expressions has no limitation since the deforma- 
tion process of the wave front takes place within the interval 5 < 1 
(XZ? e-l), that is, equation (15) completely describes the entire pro- 
cess of nonlinear deformation of the wave front. Let us note that ex- 
pression (14) represents the solution of the problem under discussion, 
differing from the exact one by a third order infinitesimal s3. Taking 
into account that the second order terms E* in the resulting solution 
have no meaning, since neglecting third order terms ~~ in the equation 
determining the derivative of the solution with respect to the slow co- 
ordinate for c = 1, in the solution a second order error* E* is 

l The situation here is similar to that which is met in applying the 
KBM method to ordinary differential equations (see, for example, [T, 
p.421). 
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introduced. In the dimensions of the quantities obtained the solutions 
have the form 

1 - Bt” 
ur,o = - U0 c (1 - &“) ) 119 ug,+ = uorlt h,1= 

The solution of equation (15) may be written Ed 

%J 77 _- .- 26 jj- 

1 - Bt” 
Hour -__ 4,” q 

in the form 

(17) 

(13) 

where 8 = e(<, I+J) satisfies the equation of heat conduction 

If 

it may be assumed that 

0 (6, Nc=o = e. (44 = exp {- .$ { rlo (I4 d$ } 
0 

and the general solution of equation (19) for the boundary condition 
(20) may be written in the following form: 

(22) 

Let us assume L1.21 that the solution for q is a linear approximation 
having the form q = - q0 sin y, then the boundary condition for 5 = 0 
will be 

0 (6, 44L=o = ew ($ COST j 
The solution of equation (19) for this boundary condition will have 

the form 

e (5, $,) _ v& ;r exp [_ (tk$@ + T] dq = n.. An e-n’SZCoS “+ (23) 

co 

(Ao = *o ($) 9 A,,+0 = 3*~, ($)I 
Here In is the modified (or hyperbolic) Bessel function. The rather 

unwieldy expression (23) is substantially simplified in the case of 
large and small conductivities of the medium. In the first case, the 
solution has the form of a progressive Riemann wave 
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q = - rlo sin (9 - 0-i) (24) 

which in an explicit form describes the nonlinear deformation of the 
wavefront. From equation (24) it follows that the effect of nonlinear- 
ity leads to a discontinuity of the wavefront at 5 * 1. 

In another limiting case with a small electric conductivity (with a 
large dispersion), solution (23) may be written in the form of a Taylor 
series, with respect to an infinitesimal parameter ~),,/26 which is correct 
to within q0/26 and has the following form: 

e-SC ‘0 q. = - q. sin+ - 46 (e -2’1;_e_4SC) sin 2~ 

In this case, the effect of nonlinearity of the equation of motion 
leads merely to the excitation of higher harmonics rather than causing 
a discontinuity of the wavefront. Formula (25) gives the dependence of 
the amplitude of the second harmonic with respect to the distance from 
the source. 
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